
Porting of GEOPM to IBM Power8 with NVLink microarchitecture

Vadim Elisseev1 Miloš Puzović2

1IBM Research

2Hartree Centre

BoF: PowerAPI, GEOPM and Redfish: Open Interfaces for Power/Energy
Measurement and Control

Elisseev and Puzović Porting GEOPM to IBM Power Birds of a Feather 1 / 7



Motivation
Energy Aware Scheduling (EAS)

The performance of future large-scale HPC and data-centric systems will be
constrained by power costs

Optimizing performance under power constraints
I Reduce power consumption of idle nodes
I Reduce power consumption of active nodes

E (t) =
∫ t
0 P(x) dx

Reduce and Control Energy EAS Policies
Reduce Power Minimize Time to Solution
Reduce Time Minimize Power to Solution
Reduce Power and Time Power Capping
Deal with Power Variations Energy Budget

Elisseev and Puzović Porting GEOPM to IBM Power Birds of a Feather 2 / 7



Motivation
Implementing EAS

Elisseev and Puzović Porting GEOPM to IBM Power Birds of a Feather 3 / 7

Model Input:
Performance counters
Power energy consumption
Historical Jobs Data
Telemetry Data

Model Requirements:
Support wide range of workloads
Work with various schedulers

Cluster/job level EAS policies
Min time to solution
Min energy to solution
Energy budget
Idle nodes
Energy aware fair share

Job level EAS policies
Min time to solution
Min energy to solution
Energy budget
Power capping
Load balancing



Why Global Extensible Open Power Manager?

Common goals with our work on EAS:
1 unlock more performance in power-limited systems
2 accelerate innovation in power management
3 enable researches to focus effort on algorithms
4 drive codesign of power and performance management features in new processors

Current functionality aligns with our aims too:
I Framework easily pluggable to the existing data-center and HPC

schedulers
I Scaling challenge for future exascale machines addressed

successfully via tree-hierarchical design and hierarchical policies
I Leverage application-awareness and learning to recognise

patterns to optimise decisions
I Comprehend and mitigate dynamic load imbalances
I Extensibility provided via plugins

Elisseev and Puzović Porting GEOPM to IBM Power Birds of a Feather 4 / 7



Progress of the port to date

Port of GEOPM observation part on IBM Power1 with five new classes:
I OCCPlatform extends Platform to describe RAPL-like observers and controllers on Power
I NVLMPlatform extends Platform to describe RAPL-like observers and controllers on GPU
I Power8NVLinkPlatformImp extends PlatformImp to implement sampling and management

by referring work to following two classes and aggregating results from them:
� PowerPlatformImp extends PlatformImp for information from CPUs
� PascalPlatformImp extends PlatformImp for information from GPUs

To collect power and performance data we are using:
I on CPU:

� libpfm4 library for performance counters
� sensor data from /sys/devices/system/cpu/occ_sensors for power consumption

I on GPU NVIDIA Management Library (NVML), a C-based API for monitoring and managing
Port of the GEOPM framework to IBM Power8 with NVLink builds on:

I IBM C/C++ and FORTRAN Compiler and IBM Spectrum MPI
I GNU toolchain and OpenMPI 2.1.2

1Power8 dual-socket CPU + Nvidia Pascal P100 GPU with high-speed embedded, proprietary and private NVLink interface
Elisseev and Puzović Porting GEOPM to IBM Power Birds of a Feather 5 / 7



Example results

Setup:
� 2× nodes - dual-socket 160 threaded cores IBM Power 8 CPU, 4× Nvidia Pascal P100 GPUs and 512GB RAM
� GCC version 4.8.5 and OpenMPI version 2.1.1
� Workload: DL_MESO - mesoscale simulation package, within Top 3 of all workloads (32.73% share) @ Hartree
� Plot (left): “geopmplotter -vp combined_power –smooth 15 .” (bgeltz-plotter-runtime branch)

Node1 Node2
0

100

200

300

400

500

P
o
w

e
r 

C
o
n
su

m
p
ti

o
n
 (

W
)

Average Power Consumption During DL_MESO Run

GPU
Rest

Further exploration:
� understand where discrepancies in power across nodes are coming
� scale the running from 2 nodes to 30+ nodes
� run the GPU-optimised version of DL_MESO

Elisseev and Puzović Porting GEOPM to IBM Power Birds of a Feather 6 / 7



The future immediate work

Remove workarounds where we are using #defines to separate between x86 and Power:
I in Controller.cpp plugin_desc.platform only knows of RAPL platform
I avoid using cpuid.h to figure out target (non-existent for Power)
I more generic implementation of CRC32 (do not rely on x86 instructions)
I is_updated() to find out whether fresh performance/power data is available relies on RAPL

Implement management part of the GEOPM framework on Power microarchitecture
I this is already on-going work,
I the most difficult part is being able to do DVFS-like modifications in user mode

Integration with:
I High Performance Computing batch scheduler such as LSF, and
I manager of containerized applications such as Mesos and/or Kubernetes.

Use these extensions to GEOPM to identify imbalance in applications ran on Hartree
machines and optimise them for a certain objective function:

I Widely used applications such as CodeSaturne and DL_MESO
I Demonstrate speed up and energy savings

Elisseev and Puzović Porting GEOPM to IBM Power Birds of a Feather 7 / 7


